

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

Deliverable: IO1A2

29 September, 2021

HeartHands Solutions LTD

Authored by: HeartHands Solutions LTD

Project Number: 2020-1-UK01-KA201-079141

IO1
Minecraft Pi & Physical Computing
Blocks

The European Commission's support for the production of this

publication does not constitute an endorsement of the contents,

which reflect the views only of the authors, and the Commission

cannot be held responsible for any use which may be made of the

information contained therein.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

Version Date Author Description Action Pages

[..] DD/MM/YYYY
PARTNER

ORGANIZATION

[Creation/Insert/ Delete/Update of the

document]
[C/I/D/U]

[No. of

pages]

1.0 28/06/2021 HESO Creation of document C 20

1.1 27/09/2021 HESO Update of document U 24

 (*) Action: C = Creation, I = Insert, U = Update, R = Replace, D = Delete

REVISION HISTORY

REFERENCED DOCUMENTS

ID Reference Title

1 2020-1-UK01-KA201-079141 STEM4CLIM8 Proposal

2

APPLICABLE DOCUMENTS

ID Reference Title

1

2

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

Executive Summary

In a recent OECD survey (OECD- Education and Skills Today 2018), covering 25 European

countries, almost all countries report shortfalls of skills that teachers need to meet school

needs, combined with difficulties in updating teachers’ skills. However, digitisation is

expected to profoundly change the way we learn and work. Many children entering school

today are likely to end up working in jobs that do not yet exist. Preparing students for

these uncharted territories means that we not only have to make sure that they have the

right technical capabilities but that we must strengthen their emotional and social skills.

Resilience, the individual capacity to overcome adverse circumstances and use them as

sources for personal development, lies at the core of being able to successfully adapt to

change and thus actively engage with our digital world. At the same time, we need to

acknowledge Internet addiction and behaviours at risk of IAB (Internet Addiction

Behaviour) as emerging problems for our youth. A STEM approach bridging physical

computing with environmental consciousness while focusing on off-screen collaborative

activities is an excellent way of improving technical capabilities while strengthening

emotional and social skills.

STEM4CLIM8 has as primary objective to produce approaches and tools to help those

working with children reach out to them with a view to help them engage with

programming and develop STEM related skills. It aims to achieve this not by increasing

screen time but by encouraging hands on play through the creation of a custom virtual

world using Minecraft modding and the execution of missions dealing with natural disasters

and using physical computing blocks which will be programmed to interact with the virtual

world through the Raspberry GPIO. The missions will reveal the science behind natural

phenomena frequently associated to climate change and inspire environmental

consciousness while at the same time enhance STEM skills.

Reference:

*OECD- Education and Skills Today, Succeeding with resilience-Lessons for schools, January 29, 2018, Retrieved February

18, 2021 from: https://oecdedutoday.com/succeeding-with-resilience-lessons-for-schools/

https://oecdedutoday.com/succeeding-with-resilience-lessons-for-schools/

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

Table of Contents

EXECUTIVE SUMMARY .. 3

1. PHYSICAL COMPUTING BLOCKS IN MINECRAFT PI .. 5

1.1 INSTALLING “FISHING TOWN” MINECRAFT PI WORLD ... 5

1.2 SCENARIOS AND INTERACTIONS .. 6

1.3 EARTHQUAKE .. 6

1.3.1 Equipment and scenario .. 6

1.3.2 Electronic circuit and physical block .. 7

1.3.3 Python programming .. 8

1.4 SINKHOLE ... 9

1.4.1 Equipment and scenario .. 9

1.4.2 Electronic circuit and physical block .. 10

1.4.3 Python programming .. 12

1.5 VOLCANO ERUPTION .. 13

1.5.1 Equipment and scenario .. 13

1.5.2 Electronic circuit and physical block .. 13

1.5.3 Python programming .. 15

1.6 HEATWAVE... 16

1.6.1 Equipment and scenario .. 16

1.6.2 Electronic circuit and physical block .. 16

1.6.3 Python programming .. 19

1.7 FLOOD ... 20

1.7.1 Equipment and scenario .. 20

1.7.2 Electronic circuit and physical block .. 21

1.7.3 Python programming .. 24

1.7 CONCLUSION .. 24

REFERENCES ... 24

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

1. Physical Computing Blocks in Minecraft Pi
A set of DIY physical computing blocks have been designed to interact with a Minecraft Pi

World where a series of natural disasters occur. These blocks will be connected through

the Raspberry Pi GPIO and will be programmed through Python programming language in

order to interact with the Minecraft Pi world, simulating natural disaster and their

catastrophic results to a small “Fishing Town”.

This guide, addressed to educators, offers instructions for assembling the physical

computing blocks, for connecting them to the GPIO and for programming them using

Python programming and Minecraft Pi.

Teachers should be equipped with the following:

• STEM4CLIM8 console

• Physical Computing Blocks

• Educational Material for teaching these phenomena.

1.1 Installing “Fishing Town” Minecraft Pi world

In order to execute any of the natural disasters’ scenarios, you first need to install a map

of a fishing town that will be used as the testing ground of the different disasters. To do

so, you first need to turn on your Raspberry Pi on your STEM4CLIM8 console.

On the desktop, you will see a folder named “Fishing Town Map”. Double click on it to see

the contents of the folder. Then follow these simple steps:

1. Open Minecraft Pi and create a new world, then close Minecraft Pi

2. Open “File Manager”.

3. Click on “View” and tick “Show Hidden”.

4. Double click on the folder named “.minecraft”.

5. Double click on the folder named “games”.

6. Double click on the folder named “com.mojang”.

7. Double click on the folder named “minecraftWorlds”.

8. Copy the contents of the “Fishing Town Map” folder into an existing “world” folder.

9. Rename that folder to “fishingtown”.

10.Open Minecraft Pi and load the “fishingtown” world.

A “Fishing Town” Minecraft Pi world will be loaded. Please note, that you need to redo this

procedure every time you need a fresh and disaster-free map.

This Minecraft Pi world will be used to simulate the following natural disasters:

• Earthquake

• Volcano eruption

• Sinkhole

• Heatwave

• Flood

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

1.2 Scenarios and Interactions

With the use of the Raspberry Pi GPIO, sensors, electronics, peripherals and DIY carton

constructs, students will learn about physical disasters, test their results and discuss their

consequences.

At first, teachers will guide their students on how to connect the sensors and other

electronics to the Raspberry Pi, how to build the DIY carton constructs and how to run the

Minecraft Pi activities in Python.

The Minecraft Pi world is formatted as a small fishing town in which the physical disasters

will occur. The activities are categorised into five topics:

1. Earthquake

2. Sinkhole

3. Volcano eruption

4. Heatwave

5. Flood

For each activity, specific instructions on how to execute it have been developed. It is

recommended to split your students in several groups, and each group should have access

to at least one STEM4CLIM8 console, a connected keyboard and mouse as well a speaker.

1.3 Earthquake

1.3.1 Equipment and scenario

This activity will present an earthquake to the Minecraft Pi world. Students will connect a

button to the Raspberry Pi GPIO and program it to create an earthquake after a press.

The idea is to create a physical computing block using the following electronics and

peripherals:

1. 1 x Breadboard

2. 1 x Push button with button cap

3. 1 x 220 Ohm Resistor

4. 2 x Male-to-Female Jumper cables

5. 1 x Carton construct

After everything is connected, the students should load the “Fishing Town” map and the

Python script named “earthquake.py” which can be found in the desktop of each

STEM4CLIM8 console.

Then each time the button is pressed, an earthquake will happen in the Minecraft Pi world

which will destroy buildings and other blocks of the “Fishing Town”, similar to a real

earthquake of high magnitude.

A follow-up discussion with your students on the impact of the earthquake and the

meaning of well-constructed building should follow after the activity.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

1.3.2 Electronic circuit and physical block

Connecting a push button to the Raspberry Pi’s GPIO is a very simple process as depicted

in Figure 1 below:

1. Connect the right side of the push button to input pin 16 (GPIO23) using a male-

to-female jumper cable.

2. Connect the left side of the push button to the 220 Ohm resistor.

3. Connect the other side of the resistor to 3.3V pin 1.

4. You circuit is ready.

Figure 1 Connecting a push-button to the GPIO using a breadboard and two jumper cables.

Understanding the different GPIO pins, you should take a look at Figure 2 which describes

each pin’s properties.

Figure 2 Raspberry Pi GPIO Pins

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

After creating the circuit, you need to assembly a DIY carton construct and place the circuit

in it. For that purpose, you need to use the following printable image. For a better

experience, make sure to print the construct in A4 white carton paper and then cut the

specified edges.

Figure 3 Printable carton construct for physical computing block with button.

1.3.3 Python programming

Simply open Thonny Python on your Raspberry Pi desktop, then load the script called

“earthquake.py” which can be found on the desktop or copy and paste the script directly

to the Python compiler of your choice. If you decide to connect the push-button to a

different GPIO pin, please make sure to change the GPIO number in the script below (lines

10 and 42).

import RPi.GPIO as GPIO

import mcpi.minecraft as minc

import mcpi.block as block

mc = minc.Minecraft.create()

import random, time

GPIO.setmode(GPIO.BCM)

GPIO.setup(23, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

def earthquake(x, z):

 mc.postToChat('Earthquake!')

 y = mc.getHeight(x, z)

 endtime = time.time() + 60

 nearthtime = time.time()

 while endtime > time.time():

 if time.time() > nearthtime:

 nearthtime = time.time() + 5

 ppos = mc.player.getPos()

 if ppos.x < x+100 and ppos.x > x-100:

 if ppos.y < y+100 and ppos.y > -60:

 if ppos.z < z+100 and ppos.z > z-100:

 mc.player.setPos(ppos.x, ppos.y, ppos.z)

 bx = random.randint(x-100, x+100)

 by = y

 bz = random.randint(z-100, z+100)

 if mc.getHeight(bx, bz) > -50:

 by = mc.getHeight(bx, bz)

 if mc.getBlock(bx, by, bz) in [block.GLASS.id, block.GLASS_PANE.id]:

 mc.setBlock(bx, by, bz, block.AIR.id)

 continue

 mc.setBlock(bx, by, bz, block.GRAVEL.id)

 mc.setBlocks(bx, by-1, bz, bx, -60, bz, block.AIR.id)

disasters = [earthquake]

def main(disasters, mc):

 baseed = random.randint(1, 10000)

 mc.postToChat('Press button for earthquake!')

 while True:

 if GPIO.input(23) == GPIO.HIGH: #Look for button press

 t = random.randint(5, 60)

 t = 5

 time.sleep(t)

 random.seed(baseed + t)

 baseed = random.randint(1, 10000)

 random.shuffle(disasters)

 disaster = random.choice(disasters)

 ppos = mc.player.getTilePos()

 disaster(ppos.x, ppos.z)

try:

 import _thread as thread

except ImportError:

 import thread

thread.start_new_thread(main, (disasters, mc))

1.4 Sinkhole

1.4.1 Equipment and scenario

This activity will present a sinkhole to the Minecraft Pi world that will happen after an

earthquake. Similar to the first activity, students will connect a button to the Raspberry Pi

GPIO and program it to create an earthquake and a sinkhole after a press.

The activity uses the following electronics and peripherals:

1. 1 x Breadboard

2. 1 x Push button with button cap

3. 1 x 220 Ohm Resistor

4. 2 x Male-to-Female Jumper cables

5. 1 x Carton construct

After everything is connected, the students should load the “Fishing Town” map and the

Python script named “sinkhole.py” which can be found in the desktop of each STEM4CLIM8

console.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

Then each time the button is pressed, an earthquake will happen in the Minecraft Pi world,

followed by a sinkhole which will destroy buildings and sink the ground like a real-life

catastrophe.

A follow-up discussion with your students on the impact of earthquakes and sinkholes

should follow after the activity.

1.4.2 Electronic circuit and physical block

Connecting a push button to the Raspberry Pi’s GPIO is a very simple process as depicted

in Figure 4 below:

1. Connect the right side of the push button to input pin 16 (GPIO23) using a male-

to-female jumper cable.

2. Connect the left side of the push button to the 220 Ohm resistor.

3. Connect the other side of the resistor to 3.3V pin 1.

4. You circuit is ready.

Figure 4 Connecting a push-button to the GPIO using a breadboard and two jumper cables.

Understanding the different GPIO pins, you should take a look at Figure 5 which describes

each pin’s properties.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

Figure 5 Raspberry Pi GPIO Pins

After creating the circuit, you need to assembly a DIY carton construct and place the circuit

in it. For that purpose, you need to use the following printable image. For a better

experience, make sure to print the construct in A4 white carton paper and then cut the

specified edges.

Figure 6 Printable carton construct for physical computing block with button.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

1.4.3 Python programming

Simply open Thonny Python on your Raspberry Pi desktop, then load the script called

“sinkhole.py” which can be found on the desktop or copy and paste the script directly to

the Python compiler of your choice. If you decide to connect the push-button to a different

GPIO pin, please make sure to change the GPIO number in the script below (lines 10 and

57).

import RPi.GPIO as GPIO

import mcpi.minecraft as minc

import mcpi.block as block

mc = minc.Minecraft.create()

import random, time

GPIO.setmode(GPIO.BCM)

GPIO.setup(23, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

def sinkhole(x, z):

 mc.postToChat('Earthquake!')

 y = mc.getHeight(x, z)

 endtime = time.time() + 60

 nearthtime = time.time()

 while endtime > time.time():

 if time.time() > nearthtime:

 nearthtime = time.time() + 5

 ppos = mc.player.getPos()

 if ppos.x < x+50 and ppos.x > x-50:

 if ppos.y < y+50 and ppos.y > -60:

 if ppos.z < z+50 and ppos.z > z-50:

 mc.player.setPos(ppos.x, ppos.y, ppos.z)

 bx = random.randint(x-50, x+50)

 by = y

 bz = random.randint(z-50, z+50)

 if mc.getHeight(bx, bz) > -50:

 by = mc.getHeight(bx, bz)

 if mc.getBlock(bx, by, bz) in [block.GLASS.id, block.GLASS_PANE.id]:

 mc.setBlock(bx, by, bz, block.AIR.id)

 continue

 mc.setBlock(bx, by, bz, block.GRAVEL.id)

 mc.setBlocks(bx, by-1, bz, bx, -60, bz, block.AIR.id)

 mc.postToChat('Sinkhole!')

 blks = []

 y = mc.getHeight(x, z)

 xdist = random.randint(1, 20)

 for bx in range(-xdist, xdist+1):

 zdist = random.randint(1, 20)

 for bz in range(-zdist, zdist+1):

 blks.append([x+bx, z+bz])

 for blk in blks:

 mc.setBlocks(blk[0], mc.getHeight(blk[0], blk[1]), blk[1], blk[0], -60, blk[1],

block.AIR.id)

 mc.setBlocks(blk[0], -55, blk[1], blk[0], -60, blk[1], block.LAVA.id)

 for blk in blks:

 mc.setBlock(blk[0], y, blk[1], block.GRAVEL.id)

disasters = [sinkhole]

def main(disasters, mc):

 baseed = random.randint(1, 10000)

 mc.postToChat('Press button for disaster!')

 while True:

 if GPIO.input(23) == GPIO.HIGH: #Look for button press

 t = random.randint(5, 60)

 t = 5

 time.sleep(t)

 random.seed(baseed + t)

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

 baseed = random.randint(1, 10000)

 random.shuffle(disasters)

 disaster = random.choice(disasters)

 ppos = mc.player.getTilePos()

 disaster(ppos.x, ppos.z)

try:

 import _thread as thread

except ImportError:

 import thread

thread.start_new_thread(main, (disasters, mc))

1.5 Volcano eruption

1.5.1 Equipment and scenario

This activity will present a volcano eruption to the Minecraft Pi world. Once again, students

will connect a button to the Raspberry Pi GPIO and program it to create a volcanic eruption

after a press.

For this activity you should use the following electronics and peripherals:

1. 1 x Breadboard

2. 1 x Push button with button cap

3. 1 x 220 Ohm Resistor

4. 2 x Male-to-Female Jumper cables

5. 1 x Carton construct

After everything is connected, the students should load the “Fishing Town” map and the

Python script named “volcano.py” which can be found in the desktop of each STEM4CLIM8

console.

Then each time the button is pressed, a volcano will appear in the Minecraft Pi world which

will erupt, and lava will start flowing towards the fishing town. After a while, the lave will

become stone, similar to a real-life volcanic eruption. Buildings and other blocks will

disappear, and trees and grass will catch on fire.

A follow-up discussion with your students on the impact of buildings and over population

of cities should follow after the activity since physical disasters have no limits and may

threaten our lives and status of living.

1.5.2 Electronic circuit and physical block

Connecting a push button to the Raspberry Pi’s GPIO is a very simple process as depicted

in Figure 7 below:

1. Connect the right side of the push button to input pin 16 (GPIO23) using a male-

to-female jumper cable.

2. Connect the left side of the push button to the 220 Ohm resistor.

3. Connect the other side of the resistor to 3.3V pin 1.

4. You circuit is ready.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

Figure 7 Connecting a push-button to the GPIO using a breadboard and two jumper cables.

Understanding the different GPIO pins, you should look at Figure 8 which describes each

pin’s properties.

Figure 8 Raspberry Pi GPIO Pins

After creating the circuit, you need to assembly a DIY carton construct and place the circuit

in it. For that purpose, you need to use the following printable image. For a better

experience, make sure to print the construct in A4 white carton paper and then cut the

specified edges.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

Figure 9 Printable carton construct for physical computing block with button.

1.5.3 Python programming

Simply open Thonny Python on your Raspberry Pi desktop, then load the script called

“volcano.py” which can be found on the desktop or copy and paste the script directly to

the Python compiler of your choice. If you decide to connect the push-button to a different

GPIO pin, please make sure to change the GPIO number in the script below (lines 9 and

13).

import RPi.GPIO as GPIO

import mcpi.minecraft as minecraft

import mcpi.block as block

import random, time

mc = minecraft.Minecraft.create()

GPIO.setmode(GPIO.BCM)

GPIO.setup(23, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

mc.postToChat('Press button for eruption!')

while True:

 if GPIO.input(23) == GPIO.HIGH: #Look for button press

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

 mc.postToChat("Eruption")

 x, y, z = mc.player.getPos()

 mc.setBlocks(x,y,z,x+20,y+15,z+20,block.AIR)

 height = 10

 center = x+15, y, z+15

 for i in range(height): #Create the base

 size = height - i

 mc.setBlocks(center[0] - size, center[1] + i, center[2] - size, center[0] +

size, center[1] + i, center[2] + size, block.STONE)

 while True:

 mc.setBlock(center[0], center[1]+height, center[2], block.LAVA_FLOWING)

 time.sleep(1)

1.6 Heatwave

1.6.1 Equipment and scenario

This activity will present a heatwave to the Minecraft Pi world. Students will connect an

ultrasonic sensor to the GPIO and program it to create a heatwave when an object moves

closer to the sensor.

The activity will use the following equipment:

1. 1 x Breadboard

2. 1 x HC-SR04 Ultrasonic Sensor

3. 3 x 1k Ohm Resistors

4. 4 x Male-to-Female Jumper cables

5. 1 x Carton construct

After everything is connected, the students should load the “Fishing Town” map and the

Python script named “heatwave.py” which can be found in the desktop of each

STEM4CLIM8 console.

As closer the “sun” is coming to the earth, the heatwave phenomenon will appear causing

the death of trees, plants and grass, similar to real-life catastrophe.

A follow up discussion with your students on the phenomenon of the rise of the

temperature and the negative results to the physical environment should follow after the

activity.

1.6.2 Electronic circuit and physical block

First thing you need to do is to create the circuit and connect the HC-SR04 sensor to the

GPIO pins of the Raspberry Pi. Before proceeding, you need to turn off your Raspberry Pi

and unplug it. The complete circuit is in the schematic diagram that follows.

The HC-SR04 ultrasonic distance sensor comes with 4 pins: power (VCC), trigger (TRIG),

echo (ECHO), and ground (GND). The power pin will be connected to the Raspberry Pi's

5V pin, trigger will be assigned to a GPIO pin as output (pin 4), echo will be assigned to a

GPIO pin as input (pin 18), and ground will be connected to a ground pin on the Raspberry

Pi GPIO.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

The program will operate in a way that whenever an object moves closer to the sensor,

the sensor emits an ultrasound pulse and the program keeps timing how long it takes to

receive the echo back (i.e. how much time passed while the sound waves were emitted,

hit the object in front of the sensor, bounced back, and came back to the sensor).

Figure 10 Schematic diagram of circuit with distance sensor connected to GPIO pins.

Understanding the different GPIO pins, you should look at Figure 11 which describes each

pin’s properties.

Figure 11 Raspberry Pi GPIO Pins

After creating the circuit, you need to assembly a DIY carton construct and place the circuit

in it. For that purpose, you need to use the following printable image. For a better

experience, make sure to print the construct in A4 white carton paper and then cut the

specified edges.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

Figure 12 Printable carton construct for physical computing block with distance sensor.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

The DIY carton construct represents the “Earth”. You will also need another object of

similar size which will represent the “Sun”. Included in the STEM4CLIM8 package, you will

find a 3D printed sphere which you can use. In addition, you can 3D print your own “sun”

by using the relevant .stl files that are included in the Raspberry Pi desktop.

1.6.3 Python programming

When you are done with the circuit, you can turn on the Raspberry Pi and start Thonny

Python, then load the script called “heatwave.py” which can be found on the desktop or

copy and paste the script directly to the Python compiler of your choice. In short, when

you run the program, the distance HC-SR04 sensor will start emitting ultrasound burst.

Each time you move closer the “sun” to the sensor (“Earth”) the heatwave phenomenon

will happen in the Minecraft Pi world. You will see trees, flowers and plants catching fire

and becoming ash.

import RPi.GPIO as GPIO

import mcpi.minecraft as minc

import mcpi.block as block

mc = minc.Minecraft.create()

import random, time

GPIO.setwarnings(False)

GPIO.cleanup()

GPIO.setmode(GPIO.BCM)

GPIO.setup(23, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) #pin for push button

#defining TRIG and ECHO pins

TRIG = 4

ECHO = 18

GPIO.setup(TRIG, GPIO.OUT)

GPIO.setup(ECHO, GPIO.IN)

def heatwave(x, z):

 mc.postToChat('Heatwave!')

 y = mc.getHeight(x, z)

 endtime = time.time() + random.randint(50, 90)

 while time.time() < endtime:

 blkid = block.AIR.id

 while blkid == block.AIR.id:

 bx = random.randint(x-10, x+10)

 by = random.randint(y, y+10)

 bz = random.randint(z-10, z+10)

 blkid = mc.getBlockWithData(bx, by, bz).id

 blk = blkid

 blkd = mc.getBlockWithData(bx, by, bz).data

 if blkid == block.GRASS.id:

 blk = block.DIRT.id

 blkd = 0

 elif blkid in [block.WATER.id, block.WATER_FLOWING.id, block.WATER_STATIONARY.id]:

 blk = block.WATER.id

 blkd = 1

 elif blkid == block.LEAVES.id:

 blk = block.COBWEB.id

 blkd = 0

 elif blkid == block.WOOD.id:

 blk = block.LAVA_STATIONARY.id

 blkd = 1

 mc.setBlock(bx, by, bz, blk, blkd)

disasters = [heatwave]

def main(disasters, mc):

 baseed = random.randint(1, 10000)

 mc.postToChat('Push button for sensor to work!')

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

 mc.postToChat('Move "sun" closer to sensor, and wait for Heatwave!')

 #emit a burst of ultrasound

 GPIO.output(TRIG, True)

 time.sleep(0.00001)

 GPIO.output(TRIG, False)

 StartTime = time.time()

 StopTime = time.time()

 while True:

 if GPIO.input(23) == GPIO.HIGH:

 while GPIO.input(ECHO) == False:

 StartTime = time.time()

 while GPIO.input(ECHO) == True:

 StopTime = time.time()

 TimeElapsed = StopTime - StartTime

 distance = (TimeElapsed * 34300) / 2

 while distance < 15:

 print (distance)

 t = random.randint(5, 120)

 t = 5

 time.sleep(t)

 random.seed(baseed + t)

 baseed = random.randint(1, 10000)

 random.shuffle(disasters)

 disaster = random.choice(disasters)

 ppos = mc.player.getTilePos()

 disaster(ppos.x, ppos.z)

try:

 import _thread as thread

except ImportError:

 import thread

thread.start_new_thread(main, (disasters, mc))

1.7 Flood

1.7.1 Equipment and scenario

This activity will present a flood to the Minecraft Pi world. Students will connect a raindrop

sensor to the GPIO and program it to create a flood each time the sensor touched water.

The idea is to create a physical computing block using the following equipment:

1. 1 x Breadboard

2. 1 x Raindrops Detection Sensor

3. 3 x Male-to-Female Jumper cables

4. 2 x Female-to-Female Jumper cables

5. 1 x Carton construct

After everything is connected, the students should load the “Fishing Town” map and the

Python script named “flood.py” which can be found in the desktop of each STEM4CLIM8

console.

Then each time water is dropped on the sensor, a flood should happen in the Minecraft Pi

world causing the drowning of everything. Heavy rain will be referenced with a message

in the Minecraft world which will create a Geyser (flood).

A follow-up discussion with your students on the wrong practices and the reasons the flood

occurred after the heavy rain should follow after the activity.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

1.7.2 Electronic circuit and physical block

Connecting a raindrop sensor to the Raspberry Pi’s GPIO is a relatively easy process which

is shown in Figure 13 below:

1. The raindrop sensor control board has 4 pins which can be connected to a GPIO,

namely, voltage (VCC), ground (GND), digital output (DO) and analogue output

(AO).

2. You need to connect the following through a breadboard or directly on the GPIO:

a. VCC to 5V (pin 2)

b. GND to GND (pin 4)

c. DO to GPIO23 (pin16)

3. Then, you need to connect the sensor detection board to the control board by using

two jumper cables, connecting the following:

a. The + side of the control board to the + side of the detection board.

b. The – side of the control board to the – side of the detection board.

4. Your circuit is ready.

Figure 13 Schematic of raindrop sensor connected to Raspberry Pi's GPIO pins.

Understanding the different GPIO pins, you should look at Figure 14 which describes each

pin’s properties.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

Figure 14 Raspberry Pi GPIO Pins

A raindrop sensor can send both analogues and digital outputs to the controlling device.

In this case, the Raspberry Pi computer only reads digital signals. So, for this activity, only

digital output is needed since the program will run each time the sensor detects a raindrop,

causing a flood in the Minecraft Pi world.

After creating the circuit, you need to assembly a DIY carton construct and place the circuit

in it. For that purpose, you need to use the following printable image. For a better

experience, make sure to print the construct in A4 white carton paper and then cut the

specified edges.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

Figure 15 Printable carton construct for physical computing block with raindrop sensor.

STEM4CLIM8 Project
2020-1-UK01-KA201-079141

1.7.3 Python programming

import RPi.GPIO as GPIO

import mcpi.minecraft as minc

import mcpi.block as block

mc = minc.Minecraft.create()

import random, time

GPIO.setmode(GPIO.BCM)

GPIO.setup(23, GPIO.IN)

def geyser(x, z):

 mc.postToChat('Flood!')

 y = mc.getHeight(x, z)

 mc.setBlocks(x-2, y+5, z-2, x+2, -60, z+2, block.WATER.id)

 time.sleep(25)

 mc.setBlocks(x-2, y+5, z-2, x+2, -60, z+2, block.AIR.id)

disasters = [geyser]

def main(disasters, mc):

 baseed = random.randint(1, 10000)

 mc.postToChat('Drop water on sensor for disaster!')

 while True:

 if GPIO.input(23) == GPIO.LOW: #Look for raindrop sensor activation

 t = random.randint(5, 120)

 t = 5

 time.sleep(t)

 random.seed(baseed + t)

 baseed = random.randint(1, 10000)

 random.shuffle(disasters)

 disaster = random.choice(disasters)

 ppos = mc.player.getTilePos()

 disaster(ppos.x, ppos.z)

try:

 import _thread as thread

except ImportError:

 import thread

thread.start_new_thread(main, (disasters, mc))

1.7 Conclusion

The use of these activities will be for the kids to experience the physical disasters and to

understand the role of human activities in worsen these phenomena, such as climate

change, etc.

References
Minecraft Pi Edition: SURVIVAL mode-ish. Retrieved from

https://teachwithict.weebly.com/computing-blog/minecraft-pi-edition-survival-mode-

ish#sthash.S6XeUUDH.dpbs Last access: 19/11/2021

How to use Rain Sensor Module with Arduino & Raspberry Pi by SunFounder Maker

Education. Retrieved from https://www.youtube.com/watch?v=Xnisf0GP9bA&t=203s Last

access: 19/11/2021

Using a Raspberry Pi distance sensor (ultrasonic sensor HC-SR04). Retrieved from

https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/ Last access:

19/11/2021

https://teachwithict.weebly.com/computing-blog/minecraft-pi-edition-survival-mode-ish#sthash.S6XeUUDH.dpbs
https://teachwithict.weebly.com/computing-blog/minecraft-pi-edition-survival-mode-ish#sthash.S6XeUUDH.dpbs
https://www.youtube.com/watch?v=Xnisf0GP9bA&t=203s
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/

